Coverage-based Neural Machine Translation

نویسندگان

  • Zhaopeng Tu
  • Zhengdong Lu
  • Yang Liu
  • Xiaohua Liu
  • Hang Li
چکیده

Attention mechanism advanced state-of-the-art neural machine translation (NMT) by jointly learning to align and translate. However, attentional NMT ignores past alignment information, which leads to over-translation and under-translation problems. In response to this problem, we maintain a coverage vector to keep track of the attention history. The coverage vector is fed to the attention model to help adjust the future attention, which guides NMT to pay more attention to the untranslated source words. Experiments show that coverage-based NMT significantly improves both translation and alignment qualities over NMT without coverage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

Coverage Embedding Models for Neural Machine Translation

In this paper, we enhance the attention-based neural machine translation (NMT) by adding explicit coverage embedding models to alleviate issues of repeating and dropping translations in NMT. For each source word, our model starts with a full coverage embedding vector to track the coverage status, and then keeps updating it with neural networks as the translation goes. Experiments on the large-s...

متن کامل

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder

Most neural machine translation (NMT) models are based on the sequential encoder-decoder framework, which makes no use of syntactic information. In this paper, we improve this model by explicitly incorporating source-side syntactic trees. More specifically, we propose (1) a bidirectional tree encoder which learns both sequential and tree structured representations; (2) a tree-coverage model tha...

متن کامل

Coverage for Character Based Neural Machine Translation Técnicas de Cobertura y Caracteres integrados en la Traducción Automática Basada en Aprendizaje Profundo

In recent years, Neural Machine Translation (NMT) has achieved stateof-the art performance in translating from a language; source language, to another; target language. However, many of the proposed methods use word embedding techniques to represent a sentence in the source or target language. Character embedding techniques for this task has been suggested to represent the words in a sentence b...

متن کامل

Interactive Attention for Neural Machine Translation

Conventional attention-based Neural Machine Translation (NMT) conducts dynamic alignment in generating the target sentence. By repeatedly reading the representation of source sentence, which keeps fixed after generated by the encoder (Bahdanau et al., 2015), the attention mechanism has greatly enhanced state-of-the-art NMT. In this paper, we propose a new attention mechanism, called INTERACTIVE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.04811  شماره 

صفحات  -

تاریخ انتشار 2016